Natural antisense transcripts: sound or silence?

نویسندگان

  • Andreas Werner
  • Ariane Berdal
چکیده

Antisense RNA was a rather uncommon term in a physiology environment until short interfering RNAs emerged as the tool of choice to knock down the expression of specific genes. As a consequence, the concept of RNA having regulatory potential became widely accepted. Yet, there is more to come. Computational studies suggest that between 15 and 25% of mammalian genes overlap, giving rise to pairs of sense and antisense RNAs. The resulting transcripts potentially interfere with each other's processing, thus representing examples of RNA-mediated gene regulation by endogenous, naturally occurring antisense transcripts. Concerns that the large-scale antisense transcription may represent transcriptional noise rather than a gene regulatory mechanism are strongly opposed by recent reports. A relatively small, well-defined group of antisense or noncoding transcripts is linked to monoallelic gene expression as observed in genomic imprinting, X chromosome inactivation, and clonal expression of B and T leukocytes. For the remaining, much larger group of bidirectionally transcribed genes, however, the physiological consequences of antisense transcription as well as the cellular mechanism(s) involved remain largely speculative.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Therapeutic targeting of non-coding RNAs.

ncRNAs (non-coding RNAs) are implicated in a wide variety of cellular processes, including the regulation of gene expression. In the present chapter we consider two classes of ncRNA: miRNAs (microRNAs) which are post-transcriptional regulators of gene expression and lncRNAs (long ncRNAs) which mediate interactions between epigenetic remodelling complexes and chromatin. Mutation and misexpressio...

متن کامل

Mu killer-Mediated and Spontaneous Silencing of Zea mays Mutator Family Transposable Elements Define Distinctive Paths of Epigenetic Inactivation

Mu killer contains a partial inverted duplication of the mudrA transposase gene and two copies of the terminal inverted repeat A (TIRA) region of the master MuDR element of maize. Mu killer can effectively silence single copy MuDR/Mu lines, and it is proposed that a ∼4 kb hairpin RNA is generated by read through transcription from a flanking gene and that this transcript serves as a substrate f...

متن کامل

WRAP53 Polymorphism, rs2287498: A Case Study in Northwest of Iran?

Background: Non-coding RNAs apply regulations on expression or function of a gene. A class of non-coding RNAs, natural antisense transcripts, might overlap with their flanking genes and emerge a new complexity upon regulation. WRAP53, is a natural antisense transcript overlapped in a head-to-head manner on the opposite strand of TP53. It has 3 transcripts of which WRAP53β produ...

متن کامل

The length of the transcript encoded from the Kcnq1ot1 antisense promoter determines the degree of silencing.

The underlying mechanisms linking antisense RNA, chromatin architecture and gene expression have not been fully elucidated. Here we show that long transcripts encoded from the Kcnq1ot1 antisense promoter silence the flanking genes more efficiently than short antisense transcripts. Interestingly, the antisense RNA-mediated deposition of inactive chromatin-specific histone modifications was highe...

متن کامل

Natural Antisense Transcripts: Molecular Mechanisms and Implications in Breast Cancers

Natural antisense transcripts are RNA sequences that can be transcribed from both DNA strands at the same locus but in the opposite direction from the gene transcript. Because strand-specific high-throughput sequencing of the antisense transcriptome has only been available for less than a decade, many natural antisense transcripts were first described as long non-coding RNAs. Although the preci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physiological genomics

دوره 23 2  شماره 

صفحات  -

تاریخ انتشار 2005